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Application
(From a press release)

Equens to offer RiskShield Fraud Protection for Card Payments

Today Equens, one of the largest pan-European card and payment 
Processors, announced that it has selected RiskShield from 
INFORM GmbH as the basis for a new approach to fraud 
detection and behaviour monitoring. By utilising 
the flexibility offered by RiskShield, Equens will be able to offer 
tailor-made fraud management services to issuers and acquirers.

UTRECHT, The Netherlands, 30/10/2012
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Crisp sets
Collection of definite, well-definable objects 

(elements).

Representation of sets:

• list of all elements

A={x1, ,xn}, xj  X

• elements with property P

A={x|x satisfies P},x  X

• Venn diagram

• characteristic function
fA: X  {0,1}, 
fA(x) = 1,  x  A
fA(x) = 0,  x  A

A
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Crisp (traditional) logic
Crisp sets are used to define interpretations of first 

order logic
If P is a unary predicate, and we have no functions, a 
possible interpretation is 
A = {0,1,2} 
PI  = {0,2}
within this interpretation, P(0) and P(2) are true,
and P(1) is false.

Crisp logic can be “fragile”: changing the 
interpretation a little can change the truth value of a 
formula dramatically.



• Sets with fuzzy, gradual boundaries
(Zadeh 1965)

• A fuzzy set A in X is characterized by its 
membership function A: X  [0,1]

A fuzzy set A is completely 
determined by the set of 
ordered pairs

   A={(x,A(x))| x  X}

X is called the domain or 
universe of discourse

Real numbers about 3:
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1

3
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A(x)



Fuzzy sets on discrete universes
Fuzzy set C = “desirable city to live in”

X = {SF, Boston, LA} (discrete and non-ordered)
C = {(SF, 0.9), (Boston, 0.8), (LA, 0.6)}

Fuzzy set A = “sensible number of children”
X = {0, 1, 2, 3, 4, 5, 6} (discrete universe)
A = {(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)}
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• Fuzzy set B = “about 50 years old”
X = Set of positive real numbers (continuous)

B = {(x, B(x)) | x in X}
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Membership Function 
formulation
Triangular MF: trimf ( x ; a ,b , c )=max (min ( x−a

b−a
,
c−x
c−b ) ,0 )

Trapezoidal MF: trapmf ( x ;a ,b , c ,d )=max (min ( x−a
b−a

,1, d−x
d −c ) ,0)

Generalized bell MF: a
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Gaussian MF: gaussmf ( x ;a ,b )=e
−

1
2 ( x−a

b )
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MF formulation



Fuzzy sets & fuzzy logic
Fuzzy sets can be used to define a level of truth of facts
Fuzzy set C = “desirable city to live in”

X = {SF, Boston, LA} (discrete and non-ordered)
C = {(SF, 0.9), (Boston, 0.8), (LA, 0.6)}

corresponds to a fuzzy interpretation in which 
C(SF) is true with degree 0.9
C(Boston) is true with degree 0.8
C(LA) is true with degree 0.6

 membership function               can be seen as a →
(fuzzy) predicate.



Notation
Many texts (especially older ones) do not use a 

consistent and clear notation

A x xA
x X

i i

i



 ( ) / A x xA

X

   ( ) /

X is discrete X is continuous

Note that  and integral signs stand for the union of 
membership grades; “/” stands for a marker and does 
not imply division.
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Fuzzy partition
Fuzzy partition formed by the linguistic values 

“young”, “middle aged”, and “old”:

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
0

0 . 5

1
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Fuzzy logic formulas
Membership functions:

B=”City is beautiful”
C=”City is clean”

Formulas:

What is the truth value of such formulas for given x?

We need to define a meaning for the connectives



Set theoretic operations
/Fuzzy logic connectives
Subset:

Complement:

Union:

Intersection:

A B A B   

)()())(),(max()( xxxxxBAC BABAc  

)()())(),(min()( xxxxxBAC BABAc  

A X A x x
A A     ( ) ( )1

(Specific case)
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• General requirements:

– Boundary: N(0)=1 and N(1) = 0

– Monotonicity: N(a) > N(b) if a < b

– Involution: N(N(a)) = a

• Two types of fuzzy complements:

– Sugeno’s complement:

– Yager’s complement:

N a
a

sas( )  
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Sugeno’s complement: Yager’s complement:
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• Basic requirements:

– Boundary: T(0, a) = T(a,0) = 0, T(a, 1) = T(1, a) = a

– Monotonicity: T(a, b) <= T(c, d) if a <= c and b <= d

– Commutativity: T(a, b) = T(b, a)

– Associativity: T(a, T(b, c)) = T(T(a, b), c)

Generalized intersection 
(Triangular/T-norm, logical and)



• Examples:

– Minimum: 

– Algebraic product: 

– Bounded product: 

– Drastic product:  

T ( a , b)=min(a , b)

T (a , b )=a⋅b

T (a , b )=max (0,( a+ b−1 ))

Generalized intersection
(Triangular/T-norm)

T (a , b )={
a if b=1
b if a=1
0 otherwise ]



Minimum:
Tm(a, b)

Algebraic
product:
Ta(a, b)

Bounded
product:
Tb(a, b)

Drastic
product:
Td(a, b)

 



• Basic requirements:

– Boundary: S(1, a) = 1, S(a, 0) = S(0, a) = a
– Monotonicity: S(a, b) < S(c, d) if a < c and b < d

– Commutativity: S(a, b) = S(b, a)

– Associativity: S(a, S(b, c)) = S(S(a, b), c)

• Examples:

– Maximum: 

– Algebraic sum: 

– Bounded sum: 

– Drastic sum

S ( a ,b )=max(a ,b)

bababaS ),(

S ( a ,b )=min(1,( a+b ))



Maximum:
Sm(a, b)

Algebraic
sum:

Sa(a, b)

Bounded
sum:

Sb(a, b)

Drastic
sum:

Sd(a, b)
 



Generalized De Morgan’s Law
T-norms and T-conorms are duals which support the 

generalization of DeMorgan’s law:
T(a, b) = N(S(N(a), N(b)))
S(a, b) = N(T(N(a), N(b)))

Tm(a, b)
Ta(a, b)
Tb(a, b)
Td(a, b)

Sm(a, b)
Sa(a, b)
Sb(a, b)
Sd(a, b)
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